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Abstract 
This paper proposes an algorithm to calculate the amount of valid linguistic data in a given text. 
The approach is based on phonetics and the human tendency to form words around the ease of 
pronunciation. 
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Introduction 
The recent evolution of computer science has made the decades old problem of differentiating 
between meaningful and gibberish information prevalent again. Computer generated 
pseudo-random strings are being widely used in various fields such obfuscation of data, 
cryptography, generating information for bots, authentication mechanisms etc. An optimal 
method to detect such strings is yet to be discovered. 
 
This paper introduces an algorithm to identify and calculate linguistic information to determine if 
a text is random generated or it contains human readable information. This paper discusses the 
approach in the context of the English language but it is applicable to any verbally expressible 
language. The complexity of the algorithm is O(n) i.e. computation time is linear to the size of 
input. 
 



Understanding the Problem 
The aim is to write a computer program that can tell informational and gibberish text apart. Two 
obvious solutions for this problem are detecting valid words in the text or calculating its entropy. 
Both of these methods have their own advantages and disadvantages. 
The common problems with approaches based on detection of valid words are 
 

1. Inability to detect made up words e.g. ​reddit 
2. Resource heavy computations to detect misspellings 
3. Inability to process poorly structured text e.g. ​frontendElementAsyncInit 

 
For example, Google Translate​[1]​ is one of the most advanced language detection and 
translation programs but it fails to even detect the correct language of the string 
frontendElementInit. 
 
 

 
 
 
Such errors can be reduced to an extent by using misspelling tolerant methods such as 
Levenshtein Distance​[2]​ but such methods require significantly more resources which might not 
be favorable for a machine processing a large amount of text. 
 
The other widely adopted solution is using Shannon Entropy to determine if a string is random 
enough to be considered as gibberish. 
 
Entropy is a concept that has been a topic of interest since it was termed. There are a lot of 
explanations and definitions to it. But let us discuss the concept of entropy in terms of text and 
determine if it is a good measure of ​randomness​. 



Entropy 
Information entropy is the average rate at which information is produced by a stochastic source 
of data.​[3] 

 
In absolute layman's terms, ”Every time something happens, its probability of it happening again 
increases. The less it happens, the more surprising it is i.e. the more information it generates. 
Entropy is the average of the amount of generated information by a source. 
The more unique things happen, the more is the entropy and the more random the source is. 
The more same things happen, the less is the entropy and the more predictable the source is.” 
 
The entropy of a text string is inversely proportional to the average of the frequencies of 
individual characters present in the string. Hence, the more unique characters are present in a 
string, the more entropy it has. 
 
The common application of entropy as a measure of randomness is flawed because it is the 
average of information generated by events and has nothing to do with predictability of the 
events. 
 
For example, let us consider two computer programs 
 

1. Program A:​ Iterates over an array of printable Unicode characters and outputs them one 
at a time. 

2. Program B:​ Monitors a sample of Polonium​[4]​, a radioactive element. Radioactive 
elements emit particles randomly and it is considered to be the only truly practically 
unpredictable event.​[5]​ Program B outputs either 0 or 1 respective to the emission of a 
particle from the atoms in a given time period. 

 
Program A​ generates a new character every time. It yields more information, hence has more 
entropy. ​Program B​ only generates two characters either 0 or 1. It yields less information, 
hence has less entropy. 
Program A​ is not random but has much higher entropy than ​Program B​ which is truly random. 
This establishes the fact that the number of possible outcomes impacts the value of entropy. 
 
Discussing it within the scope of this paper, current solutions define a threshold value (usually 
3.5) required for a string to be random. To test the implementation, let us calculate the entropy 
of the string ​9033e0e305f247c0c3c80d0c7848c8b3 
 
We start by counting the occurrences of each character and dividing it by the total number of 
characters in the string 
 



0 (occurs 6 times) -> 6/32 = 0.188 
2 (occurs 1 time)  -> 1/32 = 0.031 
3 (occurs 5 times) -> 5/32 = 0.156 
4 (occurs 2 times) -> 2/32 = 0.063 
5 (occurs 1 time)  -> 1/32 = 0.031 
7 (occurs 2 times) -> 2/32 = 0.063 
8 (occurs 4 times) -> 3/32 = 0.125 
9 (occurs 1 time)  -> 1/32 = 0.031 
b (occurs 1 time)  -> 1/32 = 0.031 
c (occurs 5 times) -> 5/32 = 0.156 
d (occurs 1 time)  -> 1/32 = 0.031 
e (occurs 2 times) -> 2/32 = 0.063 
f (occurs 1 time)  -> 1/32 = 0.031 

 
The formula for Shannon Entropy is 
 

 
 
Putting the values into the formula, we get 
 

H(X)​ = -[(0.188log20.188)+(0.031log20.031)+(0.156log20.156)+ 
(0.063log20.063)+ (0.031log20.031)+(0.063log20.063)+ (0.125log20.125)+ 
(0.031log20.031)+(0.031log20.031)+(0.156log20.156)+(0.031log20.031)+ 
(0.063log20.063)+(0.031log20.031)] 

 
Solving further, we get 
 

H(X)​ = -[(-0.453)+(-0.156)+(-0.418)+(-0.25)+(-0.156)+(-0.25)+(-0.375)+ 
(-0.156)+(-0.156)+(-0.418)+(-0.156)+(-0.25)+(-0.156)] 
 
H(X)​ = -[-3.35222] 
 
H(X)​ = 3.35222 

 
The entropy of ​9033e0e305f247c0c3c80d0c7848c8b3​ is 3.35222. Similarly, calculating the 
entropy of ​frontendElementAsyncInit​ gives us 3.70499. 
 



Ironically, as per the predefined threshold of ​3.5 in many programs​, ​frontendElementAsyncInit​ is 
random enough to be a chunk of random data but ​9033e0e305f247c0c3c80d0c7848c8b3​ is not. 
 
This contradiction arises because ​9033e0e305f247c0c3c80d0c7848c8b3​ is a hexadecimal 
string and hence is limited to the character set ​abcdef0123456789.​ No matter how random the 
source of a hexadecimal string is, its entropy is limited by its character set. 
 
Hence, in the context of text, Shannon Entropy is the average amount of information but it does 
not indicate whether the information has a meaning to it or how random its source is. 

Linguistic Approach to the Problem 
The most noticeable difference between meaningful text and a sequence of random alphabets 
is the language. A meaningful text can only be written in a well-defined language and every 
language has a grammar and its own set of rules. However, these rules are susceptible to 
errors when applied directly to a text in the wild because of the presence of imperfections. 
 
The algorithm demonstrated in this paper solves the problem by assessing the ​pronounceability 
of a given text to determine whether it belongs to a verbally expressible language or not. It does 
so by breaking the text down to bigrams[6] and validating it using an array of valid bigrams from 
the language of interest. 
 
Before we discuss the algorithm and its implementation, let us look at a sample output of a 
program using this algorithm 
 

          ​Output  

Input Total bigrams Pronounceable bigrams Unpronounceable bigrams 

Pulp 3 3 0 

Pelp 3 3 0 

Pqlp 3 0 3 

 
Pulp is a valid word and it can be pronounced without any difficulties. Pelp is a made-up word 
but it is pronounceable, it is eligible to be incorporated into the English language. Pqlp is 
another made-up word but it’s not pronounceable and hence has no place in English and can be 
considered as gibberish. 
 



To elaborate on the working of the proposed algorithm, let us go through its complete 
implementation. 

Generating a Bigram Database 
Initially, an array containing two-character combinations of all English alphabet is created i.e. 
 

[‘aa’, ‘ab’, ‘ac’, ‘ad’, . . . 'mo', 'mp', 'mq', 'mr', . . . 'zw', 'zx', 'zy', 'zz'] 

 
Then, a database containing all valid English words is loaded into the memory and each 
combination is searched in every word. The total frequencies of each combination in the 
database are then assigned to the respective variables in the array. 
 
Combinations with 0 frequencies are assigned a value of 0. Combinations with frequencies 
larger than 1000 are assigned a value of 1. Finally, combinations with frequencies smaller than 
1000 are compared against the database of valid words again to extract the characters 
preceding the combinations. This time, an array containing all the unique prefixes is assigned to 
each of the respective variables. 
 
The following is an excerpt from the resultant array 
 

... 
"gk": 0, 
"gl": 1, 
"gm": [ 

 "a”, 
 "y", 
 "o", 
 "d", 
 "e", 
 "i", 
 "n", 
 "u" 

], 
... 

 
This array is ready to be stored locally and can be used by a computer program. 
 
Below is a programmatic flow-chart explaining the algorithm in detail followed by textual 
explanation. 



 



Explanation 
This algorithm is based on the deduction that some character combinations are never used in a 
language because they are inconvenient to pronounce. 
 
The array discussed earlier is used as a reference to check if two adjacent characters can be 
pronounced. Two adjacent elements (alphabets in this case) make-up a bigram.​[6] 

For instance, bigrams for the string ​resin​ are ​re, es, si, in​. 
 
Now let walk through the various steps of the algorithm. 
 

1. Once an input string is received, it is converted to lowercase for normalization. 
2. All the characters that do not belong to the language in consideration are replaced by * 

(asterisk) 
3. Then the algorithm iterates over the string one character at a time. The characters 

present after and before the current character are loaded into memory. 
4. 3 variables ​total​, ​good​ and ​bad​ are initialized to store total number of bigrams, number of 

pronounceable bigrams and number of unpronounceable bigrams respectively. 
5. The character being iterated and the character that comes immediately after it in the 

string are compared against the bigram array generated earlier. 
a. If the value of a bigram in the database is 0, it means that the bigram is 

unpronounceable. Hence, the variable ​bad​ is incremented by 1. 
b. If the value of a bigram in the database is 1, it means that the bigram is 

pronounceable. Hence, the variable ​good​ is incremented by 0. 
c. If the value of bigram is neither 1 nor 0, the array associated with the bigram is 

loaded from the database and is used to determine if the bigram is 
pronounceable based on the prefix. The value of the variables ​good​ or ​bad​ are 
incremented by 1 as per the result.  

6. If there is a an independent alphabet such as in ​‘a’​ in the string ​‘once there was a 
crow’​, it is considered unpronounceable and the value of the variable ​bad​ is 
incremented by 1. ‘I’ and ‘a’ are the exceptions to this condition as they can exist 
independently but they do not affect the value of the ​good​ variable for the sake of false 
positives. 

7. Once the iteration is complete, the values of the variables ​total​, ​good​ and ​bad​ are 
returned. 

Python Implementation 
Below is an implementation of this algorithm in Python programming language. It is written in 
pure python and does not have any external dependency. 
 



def phonetic(string, bigrams): 
    i = bad = good = total = 0 
    string = string.lower() 
    previous_char = '*' 
    string_length = len(string) 
    alphas = 'abcdefghijklmnopqrstuvwxyz' 
    while i < string_length - 1: 
        current_char = string[i] 
        next_char = string[i + 1] 
        if next_char not in alphas: 
            next_char = '*' 
            if previous_char == '*' and current_char in 'bcdefghjklmnopqrstuvwxyz': 
                bad += 1 
            previous_char = current_char 
            i += 1 
            continue 
   if current_char in alphas: 
            bigram = current_char + next_char 
            value = bigrams[bigram] 
            if value == 0: 
                bad += 1 
            elif value == 1: 
     good += 1 
            else: 
                if previous_char in value or previous_char == '*': 
                    good += 1 
                else: 
                    bad += 1 
            total += 1 
   previous_char = current_char 
   i += 1 
    return total, good, bad 

Benchmarking 
The python script and data used for benchmarking can be downloaded from here: 
https://github.com/s0md3v/MyPapers/tree/master/A Phonetic Approach to Calculate Linguistic 
Information in Text 
 
The following tests were performed on a personal computer with 3GB RAM and a 4th Gen i3 
processor. 

Demonstration of Speed 
 
The result below was produced by parsing a 4.3 MB text file containing the entire oxford 
dictionary. 

https://github.com/s0md3v/MyPapers/tree/master/A%20Phonetic%20Approach%20to%20Calculate%20Linguistic%20Information%20in%20Text
https://github.com/s0md3v/MyPapers/tree/master/A%20Phonetic%20Approach%20to%20Calculate%20Linguistic%20Information%20in%20Text


 
~> python benchmark.py /root/oxford.txt 
 
---Result--- 
- Text length: 4478566 bytes 
- English text length: 3262241 bytes 
- Total valid bigrams: 2566359 
- Pronounceable bigrams: 2533266 
- Unpronounceable bigrams: 33105 
- Meaningful text: 98% 
 
---Benchmark--- 
- Parsing started: 1577194614 
- Parsing ended: 1577194616 
- Time taken: 2 seconds 
 
The error of 2% in Oxford dictionary was unexpected but manual checking revealed that it was 
caused by abbreviations and words from other languages. Such an entry is given below: 
 

zygote​  n. biol. cel 
. biol. cell formed by the union of two 
two gametes. [greek ​zugotos yoked​: relat 
tes. [greek ​zugotos​ ​yoked​: related to *z 
yoked​: related to *​zeugma​] 

Demonstration of Precision 
Below is the result of running the algorithm against 20,000 randomly generated alphabet with 
the website random.org​[7]​ which uses atmospheric noise to generate random data. 
 
~> python benchmark.py /root/random.txt 
 
---Result--- 
- Text length: 200000 bytes 
- English text length: 200000 bytes 
- Total valid bigrams: 199999 
- Pronounceable bigrams: 88090 
- Unpronounceable bigrams: 111909 
- Meaningful text: 44% 
 
---Benchmark--- 
- Parsing started: 1577198674 



- Parsing ended: 1577198674 
- Time taken: 0 seconds 

Conclusion 
There is plenty of room for research in the subject and its application such as improving 
brute-force attacks The algorithm proposed in this paper can be improved in terms of accuracy 
and precision by using other constructs such as syllables. 
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