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Abstract

This paper proposes an algorithm to calculate the amount of valid linguistic data in a given text.
The approach is based on phonetics and the human tendency to form words around the ease of
pronunciation.
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Introduction

The recent evolution of computer science has made the decades old problem of differentiating
between meaningful and gibberish information prevalent again. Computer generated
pseudo-random strings are being widely used in various fields such obfuscation of data,
cryptography, generating information for bots, authentication mechanisms etc. An optimal
method to detect such strings is yet to be discovered.

This paper introduces an algorithm to identify and calculate linguistic information to determine if
a text is random generated or it contains human readable information. This paper discusses the
approach in the context of the English language but it is applicable to any verbally expressible
language. The complexity of the algorithm is O(n) i.e. computation time is linear to the size of
input.



Understanding the Problem

The aim is to write a computer program that can tell informational and gibberish text apart. Two
obvious solutions for this problem are detecting valid words in the text or calculating its entropy.
Both of these methods have their own advantages and disadvantages.

The common problems with approaches based on detection of valid words are

1. Inability to detect made up words e.g. reddit
2. Resource heavy computations to detect misspellings
3. Inability to process poorly structured text e.g. frontendElementAsyncinit

For example, Google Translate! is one of the most advanced language detection and

translation programs but it fails to even detect the correct language of the string
frontendElementlinit.

Spanish — detected o Hindi

frontendElementA X frontendElementAsyncinit
Synclnit frontaindailaimaintasynchinit

) © 0

Such errors can be reduced to an extent by using misspelling tolerant methods such as
Levenshtein Distance but such methods require significantly more resources which might not
be favorable for a machine processing a large amount of text.

The other widely adopted solution is using Shannon Entropy to determine if a string is random
enough to be considered as gibberish.

Entropy is a concept that has been a topic of interest since it was termed. There are a lot of
explanations and definitions to it. But let us discuss the concept of entropy in terms of text and
determine if it is a good measure of randomness.



Entropy

Information entropy is the average rate at which information is produced by a stochastic source
of data.”

In absolute layman's terms, "Every time something happens, its probability of it happening again
increases. The less it happens, the more surprising it is i.e. the more information it generates.
Entropy is the average of the amount of generated information by a source.

The more unique things happen, the more is the entropy and the more random the source is.
The more same things happen, the less is the entropy and the more predictable the source is.”

The entropy of a text string is inversely proportional to the average of the frequencies of
individual characters present in the string. Hence, the more unique characters are present in a
string, the more entropy it has.

The common application of entropy as a measure of randomness is flawed because it is the
average of information generated by events and has nothing to do with predictability of the
events.

For example, let us consider two computer programs

1. Program A: lterates over an array of printable Unicode characters and outputs them one
at a time.

2. Program B: Monitors a sample of Polonium®, a radioactive element. Radioactive
elements emit particles randomly and it is considered to be the only truly practically
unpredictable event.”! Program B outputs either 0 or 1 respective to the emission of a
particle from the atoms in a given time period.

Program A generates a new character every time. It yields more information, hence has more
entropy. Program B only generates two characters either 0 or 1. It yields less information,
hence has less entropy.

Program A is not random but has much higher entropy than Program B which is truly random.
This establishes the fact that the number of possible outcomes impacts the value of entropy.

Discussing it within the scope of this paper, current solutions define a threshold value (usually
3.5) required for a string to be random. To test the implementation, let us calculate the entropy
of the string 9033e0e305f247c0c3c80d0c7848c8b3

We start by counting the occurrences of each character and dividing it by the total number of
characters in the string



©@ (occurs 6 times) -> 6/32 = 0.188
2 (occurs 1 time) -> 1/32 = 0.031
3 (occurs 5 times) -> 5/32 = 0.156
4 (occurs 2 times) -> 2/32 = 0.063
5 (occurs 1 time) -> 1/32 = 0.031
7 (occurs 2 times) -> 2/32 = 0.063
8 (occurs 4 times) -> 3/32 = 0.125
9 (occurs 1 time) -> 1/32 = 0.031
b (occurs 1 time) -> 1/32 = 0.031
c (occurs 5 times) -> 5/32 = 0.156
d (occurs 1 time) -> 1/32 = 0.031
e (occurs 2 times) -> 2/32 = 0.063
f (occurs 1 time) -> 1/32 = 0.031

The formula for Shannon Entropy is
T
H(X) = — ) P(x:)log, P(:)
i=1

Putting the values into the formula, we get

H(X) = -[(0.18810g20.188)+(0.03110g20.031)+(0.15610g20.156)+
(0.06310g20.063)+ (0.03110g20.031)+(0.06310g20.063)+ (0.12510g20.125)+
(0.03110g20.031)+(0.03110g20.031)+(0.15610g20.156)+(0.03110g20.031)+
(0.06310g20.063)+(0.03110g20.031) ]

Solving further, we get

H(X) = -[(-0.453)+(-0.156)+(-0.418)+(-0.25)+(-0.156)+(-0.25)+(-0.375)+
(-0.156)+(-0.156)+(-0.418)+(-0.156)+(-0.25)+(-0.156) ]

H(X) -[-3.35222]

H(X) 3.35222

The entropy of 9033e0e305f247c0c3c80d0c7848c8b3 is 3.35222. Similarly, calculating the
entropy of frontendElementAsyncinit gives us 3.70499.




Ironically, as per the predefined threshold of 3.5 in many programs, frontendElementAsynclnit is
random enough to be a chunk of random data but 9033e0e305f247c0c3c80d0c7848c8b3 is not.

This contradiction arises because 9033e0e305f247c0c3c80d0c7848c8b3 is a hexadecimal
string and hence is limited to the character set abcdef0123456789. No matter how random the
source of a hexadecimal string is, its entropy is limited by its character set.

Hence, in the context of text, Shannon Entropy is the average amount of information but it does
not indicate whether the information has a meaning to it or how random its source is.

Linguistic Approach to the Problem

The most noticeable difference between meaningful text and a sequence of random alphabets
is the language. A meaningful text can only be written in a well-defined language and every
language has a grammar and its own set of rules. However, these rules are susceptible to
errors when applied directly to a text in the wild because of the presence of imperfections.

The algorithm demonstrated in this paper solves the problem by assessing the pronounceability
of a given text to determine whether it belongs to a verbally expressible language or not. It does
so by breaking the text down to bigrams[6] and validating it using an array of valid bigrams from
the language of interest.

Before we discuss the algorithm and its implementation, let us look at a sample output of a
program using this algorithm

Output
Input Total bigrams | Pronounceable bigrams | Unpronounceable bigrams
Pulp 3 3 0
Pelp 3 3 0
Palp 3 0 3

Pulp is a valid word and it can be pronounced without any difficulties. Pelp is a made-up word
but it is pronounceabile, it is eligible to be incorporated into the English language. Pqlp is
another made-up word but it's not pronounceable and hence has no place in English and can be
considered as gibberish.




To elaborate on the working of the proposed algorithm, let us go through its complete
implementation.

Generating a Bigram Database

Initially, an array containing two-character combinations of all English alphabet is created i.e.

[@aa’, ‘ab’, ‘ac’, ‘ad’, . . . 'mo’, 'mp’, 'mq’, 'mr', . . . 'zw', 'zX', 'zy', 'zZ']

Then, a database containing all valid English words is loaded into the memory and each
combination is searched in every word. The total frequencies of each combination in the
database are then assigned to the respective variables in the array.

Combinations with 0 frequencies are assigned a value of 0. Combinations with frequencies
larger than 1000 are assigned a value of 1. Finally, combinations with frequencies smaller than
1000 are compared against the database of valid words again to extract the characters
preceding the combinations. This time, an array containing all the unique prefixes is assigned to
each of the respective variables.

The following is an excerpt from the resultant array

Ilgkll: O,
llglll: 1,
Ilgmll: [

lla”,
Ilyll,
"O",
Ildll,

lle ,

lln ,

u

1,

This array is ready to be stored locally and can be used by a computer program.

Below is a programmatic flow-chart explaining the algorithm in detail followed by textual
explanation.




return total, good, bad

False
)

i = bad = good = total = 0

input string previous_char =" F—enter while loop i = lenistring)
string = string.lower() Tﬂu A
True
bad+1 previous char == * AND current_char =_5trilng[i]
total + 1 [ —True current char in Hralse— next_char = string(i + 1]
bedefghjklmnoparstuvawey:
. . . next_char is in
next_char = b ralse abedefghijklmnopgrstuvwxyz
False
current_char is in
abedefghijklmnoparstuvwayz
True
bigram .
database bigram = current_char + next_char
bad + 1
total + 1 l
get bigram's value
»
evaluate bigram value
alse
previous char in value
—False OR
previous char ="~
value = 1 value = 0
¥
Trug
i good + 1
total + 1 ¥
good + 1 bad + 1

total + 1 fotal + 1




Explanation

This algorithm is based on the deduction that some character combinations are never used in a
language because they are inconvenient to pronounce.

The array discussed earlier is used as a reference to check if two adjacent characters can be
pronounced. Two adjacent elements (alphabets in this case) make-up a bigram.
For instance, bigrams for the string resin are re, es, si, in.

Now let walk through the various steps of the algorithm.

1. Once an input string is received, it is converted to lowercase for normalization.

2. All the characters that do not belong to the language in consideration are replaced by *
(asterisk)

3. Then the algorithm iterates over the string one character at a time. The characters
present after and before the current character are loaded into memory.

4. 3 variables total, good and bad are initialized to store total number of bigrams, number of
pronounceable bigrams and number of unpronounceable bigrams respectively.

5. The character being iterated and the character that comes immediately after it in the
string are compared against the bigram array generated earlier.

a. If the value of a bigram in the database is 0, it means that the bigram is
unpronounceable. Hence, the variable bad is incremented by 1.

b. If the value of a bigram in the database is 1, it means that the bigram is
pronounceable. Hence, the variable good is incremented by O.

c. Ifthe value of bigram is neither 1 nor 0, the array associated with the bigram is
loaded from the database and is used to determine if the bigram is
pronounceable based on the prefix. The value of the variables good or bad are
incremented by 1 as per the result.

6. Ifthere is a an independent alphabet such as in ‘@’ in the string ‘once there was a
crow’, it is considered unpronounceable and the value of the variable bad is
incremented by 1. ‘I’ and ‘a’ are the exceptions to this condition as they can exist
independently but they do not affect the value of the good variable for the sake of false
positives.

7. Once the iteration is complete, the values of the variables total, good and bad are
returned.

Python Implementation

Below is an implementation of this algorithm in Python programming language. It is written in
pure python and does not have any external dependency.



def phonetic(string, bigrams):
i = bad = good = total = 0
string = string.lower()
previous_char = '"x*!'
string_length = len(string)
alphas = 'abcdefghijklmnopqrstuvwxyz'
while i < string_length - 1:
current_char = string[i]
next_char = string[i + 1]
if next_char not 1in alphas:
next_char = "'
if previous_char == 'x' and current_char 1in 'bcdefghjklmnopqrstuvwxyz':
bad += 1
previous_char = current_char
i+=1
continue
if current_char 1in alphas:
bigram = current_char + next_char
value = bigrams[bigram]
if value == 0:
bad += 1
elif value == 1:
good += 1
else:
if previous_char 1in value or previous_char == '"x':
good += 1
else:
bad += 1
total += 1
previous_char = current_char
i+=1
return total, good, bad

Benchmarking

The python script and data used for benchmarking can be downloaded from here:
https://github.com/sO0md3v/MyPapers/tree/master/A Phonetic Approach to Calculate Linguistic
Information in Text

The following tests were performed on a personal computer with 3GB RAM and a 4th Gen i3
processor.

Demonstration of Speed

The result below was produced by parsing a 4.3 MB text file containing the entire oxford
dictionary.



https://github.com/s0md3v/MyPapers/tree/master/A%20Phonetic%20Approach%20to%20Calculate%20Linguistic%20Information%20in%20Text
https://github.com/s0md3v/MyPapers/tree/master/A%20Phonetic%20Approach%20to%20Calculate%20Linguistic%20Information%20in%20Text

~> python benchmark.py /root/oxford.txt

---Result---

- Text length: 4478566 bytes

- English text length: 3262241 bytes
Total valid bigrams: 2566359

- Pronounceable bigrams: 2533266

- Unpronounceable bigrams: 33105
Meaningful text: 98%

--Benchmark---
Parsing started: 1577194614
Parsing ended: 1577194616
Time taken: 2 seconds

The error of 2% in Oxford dictionary was unexpected but manual checking revealed that it was
caused by abbreviations and words from other languages. Such an entry is given below:

zygote n. biol. cel

. biol. cell formed by the union of two

two gametes. [greek zugotos yoked: relat
tes. [greek zugotos yoked: related to *z
yoked: related to *zeugmal

Demonstration of Precision

Below is the result of running the algorithm against 20,000 randomly generated alphabet with
the website random.org!” which uses atmospheric noise to generate random data.

~> python benchmark.py /root/random.txt

---Result---

- Text length: 200000 bytes

- English text length: 200000 bytes
- Total valid bigrams: 199999

- Pronounceable bigrams: 88090

- Unpronounceable bigrams: 111909

- Meaningful text: 44%

--Benchmark---
Parsing started: 1577198674



- Parsing ended: 1577198674
- Time taken: 0 seconds

Conclusion

There is plenty of room for research in the subject and its application such as improving
brute-force attacks The algorithm proposed in this paper can be improved in terms of accuracy
and precision by using other constructs such as syllables.

References.

Google Translate https://translate.google.com

Levenshtein Distance https://en.wikipedia.org/wiki/Levenshtein_distance
Information Theory https://en.wikipedia.org/wiki/Entropy_(information_theory)
Polonium https://en.wikipedia.org/wiki/Polonium

Radioactive Decay https://en.wikipedia.org/wiki/Radioactive_decay

Bigram https://en.wikipedia.org/wiki/Bigram

random.org https://www.random.org

NoOoakrWDN -~



https://translate.google.com/
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Polonium
https://en.wikipedia.org/wiki/Radioactive_decay
https://en.wikipedia.org/wiki/Bigram
https://www.random.org/

